Alternating Sign Matrices and Latin Squares

Cian O'Brien
Rachel Quinlan and Kevin Jennings
National University of Ireland, Galway
c.obrien40@nuigalway.ie
Postgraduate Modelling Group, NUI Galway
October 4th, 2019

Alternating Sign Matrices

An Alternating Sign Matrix (ASM) is ($0,1,-1$)-matrix for which all row and column sums are 1, and the non-zero elements in each row and column alternate in sign.

Alternating Sign Matrices

An Alternating Sign Matrix (ASM) is ($0,1,-1$)-matrix for which all row and column sums are 1, and the non-zero elements in each row and column alternate in sign.

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Alternating Sign Matrices

An Alternating Sign Matrix (ASM) is ($0,1,-1$)-matrix for which all row and column sums are 1, and the non-zero elements in each row and column alternate in sign.

$$
\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
+ & - & + & 0 \\
0 & + & - & + \\
0 & 0 & + & 0
\end{array}\right]
$$

Alternating Sign Matrices

An Alternating Sign Matrix (ASM) is ($0,1,-1$)-matrix for which all row and column sums are 1, and the non-zero elements in each row and column alternate in sign.

$$
\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
+ & - & + & 0 \\
0 & + & - & + \\
0 & 0 & + & 0
\end{array}\right]
$$

They are a generalisation of the permutation matrices.

Alternating Sign Matrices

An Alternating Sign Matrix (ASM) is ($0,1,-1$)-matrix for which all row and column sums are 1, and the non-zero elements in each row and column alternate in sign.

$$
\left[\begin{array}{cccc}
0 & + & 0 & 0 \\
+ & - & + & 0 \\
0 & + & - & + \\
0 & 0 & + & 0
\end{array}\right]
$$

They are a generalisation of the permutation matrices.

$$
\left[\begin{array}{cccc}
+ & 0 & 0 & 0 \\
0 & 0 & 0 & + \\
0 & + & 0 & 0 \\
0 & 0 & + & 0
\end{array}\right]
$$

Alternating Sign Hypermatrices

An Alternating Sign Hypermatrix (ASHM) is a hypermatrix ($n \times n \times n$ array) for which every plane is an ASM.

Alternating Sign Hypermatrices

An Alternating Sign Hypermatrix (ASHM) is a hypermatrix ($n \times n \times n$ array) for which every plane is an ASM.

Alternating Sign Hypermatrices

An Alternating Sign Hypermatrix (ASHM) is a hypermatrix ($n \times n \times n$ array) for which every plane is an ASM.

$$
\left[\begin{array}{ccc}
+ & 0 & 0 \\
0 & + & 0 \\
0 & 0 & +
\end{array}\right] \nearrow\left[\begin{array}{lll}
0 & + & 0 \\
+ & - & + \\
0 & + & 0
\end{array}\right] \nearrow\left[\begin{array}{ccc}
0 & 0 & + \\
0 & + & 0 \\
+ & 0 & 0
\end{array}\right]
$$

Non-Zero Entry Bounds for ASMs

The number of non-zero entries in the rows/columns of an ASM is bounded above by $(1,3,5, \ldots, 5,3,1)$.

Non-Zero Entry Bounds for ASMs

The number of non-zero entries in the rows/columns of an ASM is bounded above by $(1,3,5, \ldots, 5,3,1)$.

$$
\left[\begin{array}{lllll}
0 & 0 & + & 0 & 0 \\
0 & + & - & + & 0 \\
+ & - & + & - & + \\
0 & + & - & + & 0 \\
0 & 0 & + & 0 & 0
\end{array}\right]
$$

Non-Zero Entry Bounds for ASHMs

The number of non-zero entries in the planes of an ASHM is bounded above by

$$
\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
1 & 3 & \cdots & 3 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 3 & \cdots & 3 & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

Non-Zero Entry Bounds for ASHMs

The number of non-zero entries in the planes of an ASHM is bounded above by

$$
\left[\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
1 & 3 & \cdots & 3 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 3 & \cdots & 3 & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

$$
\left(\begin{array}{ccccc}
+ & 0 & 0 & 0 & 0 \\
0 & + & 0 & 0 & 0 \\
0 & 0 & + & 0 & 0 \\
0 & 0 & 0 & + & 0 \\
0 & 0 & 0 & 0 & +
\end{array}\right) \quad \nearrow\left(\begin{array}{ccccc}
0 & + & 0 & 0 & 0 \\
+ & - & + & 0 & 0 \\
0 & + & - & + & 0 \\
0 & 0 & + & - & + \\
0 & 0 & 0 & + & 0
\end{array}\right) \nearrow\left(\begin{array}{cccc}
0 & 0 & + & 0 \\
0 \\
0 & + & - & + \\
+ & - & + & - \\
+ \\
0 & + & - & + \\
0 & 0 & + & 0
\end{array} 00\right) ~ \nearrow\left(\begin{array}{lllll}
0 & 0 & 0 & + & 0 \\
0 & 0 & + & - & + \\
0 & + & - & + & 0 \\
+ & - & + & 0 & 0 \\
0 & + & 0 & 0 & 0
\end{array}\right) \quad \nearrow\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & + \\
0 & 0 & + & 0 \\
0 & 0 & + & 0 \\
0 \\
0 & + & 0 & 0 \\
+ & 0 & 0 & 0
\end{array}\right)
$$

Latin Squares

An $n \times n$ Latin Square is an $n \times n$ array of n symbols such that each symbol occurs exactly once in each row and column.

Latin Squares

An $n \times n$ Latin Square is an $n \times n$ array of n symbols such that each symbol occurs exactly once in each row and column.
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$

Latin Squares

An $n \times n$ Latin Square is an $n \times n$ array of n symbols such that each symbol occurs exactly once in each row and column.
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$

Each $n \times n$ latin square can be decomposed uniquely into a sum of scalar multiples of mutually orthogonal permutation matrices.

Latin Squares

An $n \times n$ Latin Square is an $n \times n$ array of n symbols such that each symbol occurs exactly once in each row and column.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+2\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+3\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Each $n \times n$ latin square can be decomposed uniquely into a sum of scalar multiples of mutually orthogonal permutation matrices.

Latin Squares

An $n \times n$ Latin Square is an $n \times n$ array of n symbols such that each symbol occurs exactly once in each row and column.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+2\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+3\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Each $n \times n$ latin square can be decomposed uniquely into a sum of scalar multiples of mutually orthogonal permutation matrices.
Therefore each latin square corresponds uniquely to a permutation hypermatrix. For a permutation hypermatrix M, define $L(M)$ to be $L(M)_{i, j, k}=\sum_{k=1}^{n} k \times M_{i, j, k}$.

Latin Squares

An $n \times n$ Latin Square is an $n \times n$ array of n symbols such that each symbol occurs exactly once in each row and column.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]+2\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+3\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Each $n \times n$ latin square can be decomposed uniquely into a sum of scalar multiples of mutually orthogonal permutation matrices.
Therefore each latin square corresponds uniquely to a permutation hypermatrix. For a permutation hypermatrix M, define $L(M)$ to be $L(M)_{i, j, k}=\sum_{k=1}^{n} k \times M_{i, j, k}$.

$$
\left[\begin{array}{ccc}
+ & 0 & 0 \\
0 & 0 & + \\
0 & + & 0
\end{array}\right] \nearrow\left[\begin{array}{ccc}
0 & + & 0 \\
+ & 0 & 0 \\
0 & 0 & +
\end{array}\right] \nearrow\left[\begin{array}{ccc}
0 & 0 & + \\
0 & + & 0 \\
+ & 0 & 0
\end{array}\right]
$$

ASHM-Latin Squares

An $n \times n$ ASHM-Latin Square is an $n \times n$ matrix $L(A)$ such that $L(A)_{i, j, k}=\sum_{k=1}^{n} k \times A_{i, j, k}$ for some $n \times n \times n$ alternating sign hypermatrix A

ASHM-Latin Squares

An $n \times n$ ASHM-Latin Square is an $n \times n$ matrix $L(A)$ such that $L(A)_{i, j, k}=\sum_{k=1}^{n} k \times A_{i, j, k}$ for some $n \times n \times n$ alternating sign hypermatrix A

$$
A=\left[\begin{array}{ccc}
+ & 0 & 0 \\
0 & + & 0 \\
0 & 0 & +
\end{array}\right] \nearrow\left[\begin{array}{lll}
0 & + & 0 \\
+ & - & + \\
0 & + & 0
\end{array}\right] \nearrow\left[\begin{array}{ccc}
0 & 0 & + \\
0 & + & 0 \\
+ & 0 & 0
\end{array}\right]
$$

ASHM-Latin Squares

An $n \times n$ ASHM-Latin Square is an $n \times n$ matrix $L(A)$ such that $L(A)_{i, j, k}=\sum_{k=1}^{n} k \times A_{i, j, k}$ for some $n \times n \times n$ alternating sign hypermatrix A

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
+ & 0 & 0 \\
0 & + & 0 \\
0 & 0 & +
\end{array}\right] \nearrow\left[\begin{array}{lll}
0 & + & 0 \\
+ & - & + \\
0 & + & 0
\end{array}\right] \nearrow\left[\begin{array}{lll}
0 & 0 & + \\
0 & + & 0 \\
+ & 0 & 0
\end{array}\right] \\
L(A)=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2 \\
3 & 2 & 1
\end{array}\right]
\end{gathered}
$$

Basic Facts about ASHM-Latin Squares

All entries of an $n \times n$ ASHM-Latin Square are between 1 and n.

Basic Facts about ASHM-Latin Squares

All entries of an $n \times n$ ASHM-Latin Square are between 1 and n. An entry of an ASHM-Latin Square is calculated by the sum of integers between 1 and n which increase in magnitude but alternate in sign.

Basic Facts about ASHM-Latin Squares

All entries of an $n \times n$ ASHM-Latin Square are between 1 and n.
An entry of an ASHM-Latin Square is calculated by the sum of integers between 1 and n which increase in magnitude but alternate in sign.

The outer rows and columns contain each symbol exactly once.

Basic Facts about ASHM-Latin Squares

All entries of an $n \times n$ ASHM-Latin Square are between 1 and n.
An entry of an ASHM-Latin Square is calculated by the sum of integers between 1 and n which increase in magnitude but alternate in sign.

The outer rows and columns contain each symbol exactly once. The outer planes of the ASHM can each only contain one entry.

Basic Facts about ASHM-Latin Squares

All entries of an $n \times n$ ASHM-Latin Square are between 1 and n. An entry of an ASHM-Latin Square is calculated by the sum of integers between 1 and n which increase in magnitude but alternate in sign.

The outer rows and columns contain each symbol exactly once. The outer planes of the ASHM can each only contain one entry.

Each row and column sums to $\frac{n(n+1)}{2}$.

Basic Facts about ASHM-Latin Squares

All entries of an $n \times n$ ASHM-Latin Square are between 1 and n. An entry of an ASHM-Latin Square is calculated by the sum of integers between 1 and n which increase in magnitude but alternate in sign.

The outer rows and columns contain each symbol exactly once. The outer planes of the ASHM can each only contain one entry.

Each row and column sums to $\frac{n(n+1)}{2}$.
Each row and column sum of the ASHM is 1 , and row and column of and ASHM-Latin Square is therefore $1(1)+2(1)+3(1)+\cdots+n(1)$.

Interesting Open Problems/Questions

Does each ASHM-Latin Square correspond to exactly one ASHM?

Interesting Open Problems/Questions

Does each ASHM-Latin Square correspond to exactly one ASHM? If $L(A)$ is a latin square, then A is a permutation matrix.

Interesting Open Problems/Questions

Does each ASHM-Latin Square correspond to exactly one ASHM? If $L(A)$ is a latin square, then A is a permutation matrix.
A full characterisation of ASHM-Latin Squares.

Interesting Open Problems/Questions

Does each ASHM-Latin Square correspond to exactly one ASHM?
If $L(A)$ is a latin square, then A is a permutation matrix.
A full characterisation of ASHM-Latin Squares.
Each row and column of an ASHM-Latin Square is majorized by $z_{n}=(n, n-1, \ldots, 2,1)$.

Interesting Open Problems/Questions

Does each ASHM-Latin Square correspond to exactly one ASHM? If $L(A)$ is a latin square, then A is a permutation matrix.
A full characterisation of ASHM-Latin Squares.
Each row and column of an ASHM-Latin Square is majorized by

$$
z_{n}=(n, n-1, \ldots, 2,1) .
$$

What is the maximum number of times a symbol can occur in a ASHM-Latin Square?

Interesting Open Problems/Questions

Does each ASHM-Latin Square correspond to exactly one ASHM? If $L(A)$ is a latin square, then A is a permutation matrix.
A full characterisation of ASHM-Latin Squares.
Each row and column of an ASHM-Latin Square is majorized by

$$
z_{n}=(n, n-1, \ldots, 2,1) .
$$

What is the maximum number of times a symbol can occur in a

ASHM-Latin Square?

Current highest found is $2 n$, with achievable example for all odd $n \geq 5$

$$
\left[\begin{array}{lllllll}
1 & 2 & 3 & 7 & 5 & 6 & 4 \\
2 & 2 & 3 & 3 & 6 & 7 & 5 \\
3 & 3 & 2 & 5 & 3 & 5 & 7 \\
4 & 3 & 4 & 2 & 6 & 3 & 6 \\
6 & 7 & 3 & 4 & 2 & 3 & 3 \\
7 & 5 & 6 & 3 & 3 & 2 & 2 \\
5 & 6 & 7 & 4 & 3 & 2 & 1
\end{array}\right]
$$

Richard A. Brualdi, Geir Dahl, Alternating Sign Matrices and Hypermatrices, and a Generalization of Latin Squares. arXiv:1704.07752, 2017.

